|
1: |
|
app(app(le,0),y) |
→ true |
2: |
|
app(app(le,app(s,x)),0) |
→ false |
3: |
|
app(app(le,app(s,x)),app(s,y)) |
→ app(app(le,x),y) |
4: |
|
app(app(eq,0),0) |
→ true |
5: |
|
app(app(eq,0),app(s,y)) |
→ false |
6: |
|
app(app(eq,app(s,x)),0) |
→ false |
7: |
|
app(app(eq,app(s,x)),app(s,y)) |
→ app(app(eq,x),y) |
8: |
|
app(app(app(if,true),x),y) |
→ x |
9: |
|
app(app(app(if,false),x),y) |
→ y |
10: |
|
app(minsort,nil) |
→ nil |
11: |
|
app(minsort,app(app(cons,x),y)) |
→ app(app(cons,app(app(min,x),y)),app(minsort,app(app(del,app(app(min,x),y)),app(app(cons,x),y)))) |
12: |
|
app(app(min,x),nil) |
→ x |
13: |
|
app(app(min,x),app(app(cons,y),z)) |
→ app(app(app(if,app(app(le,x),y)),app(app(min,x),z)),app(app(min,y),z)) |
14: |
|
app(app(del,x),nil) |
→ nil |
15: |
|
app(app(del,x),app(app(cons,y),z)) |
→ app(app(app(if,app(app(eq,x),y)),z),app(app(cons,y),app(app(del,x),z))) |
|
There are 26 dependency pairs:
|
16: |
|
APP(app(le,app(s,x)),app(s,y)) |
→ APP(app(le,x),y) |
17: |
|
APP(app(le,app(s,x)),app(s,y)) |
→ APP(le,x) |
18: |
|
APP(app(eq,app(s,x)),app(s,y)) |
→ APP(app(eq,x),y) |
19: |
|
APP(app(eq,app(s,x)),app(s,y)) |
→ APP(eq,x) |
20: |
|
APP(minsort,app(app(cons,x),y)) |
→ APP(app(cons,app(app(min,x),y)),app(minsort,app(app(del,app(app(min,x),y)),app(app(cons,x),y)))) |
21: |
|
APP(minsort,app(app(cons,x),y)) |
→ APP(cons,app(app(min,x),y)) |
22: |
|
APP(minsort,app(app(cons,x),y)) |
→ APP(minsort,app(app(del,app(app(min,x),y)),app(app(cons,x),y))) |
23: |
|
APP(minsort,app(app(cons,x),y)) |
→ APP(app(del,app(app(min,x),y)),app(app(cons,x),y)) |
24: |
|
APP(minsort,app(app(cons,x),y)) |
→ APP(del,app(app(min,x),y)) |
25: |
|
APP(minsort,app(app(cons,x),y)) |
→ APP(app(min,x),y) |
26: |
|
APP(minsort,app(app(cons,x),y)) |
→ APP(min,x) |
27: |
|
APP(app(min,x),app(app(cons,y),z)) |
→ APP(app(app(if,app(app(le,x),y)),app(app(min,x),z)),app(app(min,y),z)) |
28: |
|
APP(app(min,x),app(app(cons,y),z)) |
→ APP(app(if,app(app(le,x),y)),app(app(min,x),z)) |
29: |
|
APP(app(min,x),app(app(cons,y),z)) |
→ APP(if,app(app(le,x),y)) |
30: |
|
APP(app(min,x),app(app(cons,y),z)) |
→ APP(app(le,x),y) |
31: |
|
APP(app(min,x),app(app(cons,y),z)) |
→ APP(le,x) |
32: |
|
APP(app(min,x),app(app(cons,y),z)) |
→ APP(app(min,x),z) |
33: |
|
APP(app(min,x),app(app(cons,y),z)) |
→ APP(app(min,y),z) |
34: |
|
APP(app(min,x),app(app(cons,y),z)) |
→ APP(min,y) |
35: |
|
APP(app(del,x),app(app(cons,y),z)) |
→ APP(app(app(if,app(app(eq,x),y)),z),app(app(cons,y),app(app(del,x),z))) |
36: |
|
APP(app(del,x),app(app(cons,y),z)) |
→ APP(app(if,app(app(eq,x),y)),z) |
37: |
|
APP(app(del,x),app(app(cons,y),z)) |
→ APP(if,app(app(eq,x),y)) |
38: |
|
APP(app(del,x),app(app(cons,y),z)) |
→ APP(app(eq,x),y) |
39: |
|
APP(app(del,x),app(app(cons,y),z)) |
→ APP(eq,x) |
40: |
|
APP(app(del,x),app(app(cons,y),z)) |
→ APP(app(cons,y),app(app(del,x),z)) |
41: |
|
APP(app(del,x),app(app(cons,y),z)) |
→ APP(app(del,x),z) |
|
The approximated dependency graph contains one SCC:
{16,18,20,22,23,25,27,28,30,32,33,35,36,38,41}.